Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664585

RESUMO

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Assuntos
Ferro , Microambiente Tumoral , Animais , Ferro/metabolismo , Camundongos , Microambiente Tumoral/imunologia , Humanos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/imunologia , Camundongos Endogâmicos C57BL , Lipocalina-2/metabolismo , Lipocalina-2/imunologia , Feminino , Simbiose/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Ativação de Macrófagos/imunologia , Camundongos Knockout
2.
Exp Mol Med ; 56(2): 422-440, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374207

RESUMO

Accumulating evidence hints heterochromatin anchoring to the inner nuclear membrane as an upstream regulatory process of gene expression. Given that the formation of neural progenitor cell lineages and the subsequent maintenance of postmitotic neuronal cell identity critically rely on transcriptional regulation, it seems possible that the development of neuronal cells is influenced by cell type-specific and/or context-dependent programmed regulation of heterochromatin anchoring. Here, we explored this possibility by genetically disrupting the evolutionarily conserved barrier-to-autointegration factor (Baf) in the Drosophila nervous system. Through single-cell RNA sequencing, we demonstrated that Baf knockdown induces prominent transcriptomic changes, particularly in type I neuroblasts. Among the differentially expressed genes, our genetic analyses identified teashirt (tsh), a transcription factor that interacts with beta-catenin, to be closely associated with Baf knockdown-induced phenotypes that were suppressed by the overexpression of tsh or beta-catenin. We also found that Baf and tsh colocalized in a region adjacent to heterochromatin in type I NBs. Notably, the subnuclear localization pattern remained unchanged when one of these two proteins was knocked down, indicating that both proteins contribute to the anchoring of heterochromatin to the inner nuclear membrane. Overall, this study reveals that the Baf-mediated transcriptional regulation of teashirt is a novel molecular mechanism that regulates the development of neural progenitor cell lineages.


Assuntos
Células-Tronco Neurais , beta Catenina , Animais , Drosophila , Regulação da Expressão Gênica , Heterocromatina/genética , Tireotropina
3.
Comput Struct Biotechnol J ; 20: 5911-5924, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382185

RESUMO

Primordial germ cells (PGCs) in chickens polarize and move passively toward the anterior region by the morphogenetic movement of the embryo. Further migration of PGCs towards the genital ridge via the germinal crescent region and blood vessels occurs actively through the chemoattractive signals. The mechanisms of initiation of PGCs migration, lodging the PGCs in the vascular system, and colonization of PGCs in the gonads are well-studied. However, transcriptome sequencing-based cues directing the migration of the PGCs towards gonads, some of the relevant molecules, biological processes, and transcription factors (TFs) are less studied in chickens. The current study comprehensively interprets the transcriptional programming of PGCs during their active migration (E2.5 to E8). Current results revealed several vital understandings, including a set of genes that upregulated male-specifically (XPA, GNG10, RPL17, RPS23, and NDUFS4) or female-specifically (HINTW, NIPBL, TERAL2, ATP5F1AW, and SMAD2W) in migrating PGCs, and transcriptionally distinct PGCs, particularly in the gonadal environment. We identified DNA methylation and histone modification-associated genes that are novel in chicken PGCs and show a time-dependent enrichment in migrating PGCs. We further identified a large number of differentially expressed genes (DEGs, including TFs) in blood PGCs (at E2.5) compared to gonadal PGCs (at E8) in both sexes; however, this difference was greater in males. We also revealed the enriched biological processes and signaling pathways of significant DEGs identified commonly, male-specifically, or female-specifically between the PGCs isolated at E2.5, E6, and E8. Collectively, these analyses provide molecular insights into chicken PGCs during their active migration phase.

4.
Alzheimers Res Ther ; 14(1): 158, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271414

RESUMO

BACKGROUND: Microglia are the resident immune cells found in our brain. They have a critical role in brain maintenance. Microglia constantly scavenge various waste materials in the brain including damaged or apoptotic neurons and Aß. Through phagocytosis of Aß, microglia prevent the accumulation of Aß plaque in the brain. However, in Alzheimer's disease (AD) patients, chronic exposure to Aß makes microglia to become exhausted, which reduces their phagocytic activity against Aß. Since microglia play an important role in Aß clearance, enhancing microglial phagocytic activity against Aß is a promising target for AD treatment. Therefore, there is a great need for therapeutic candidate that enhances microglial Aß clearance while inhibiting microglia's pathogenic properties. METHODS: In vivo studies were conducted with 5xFAD AD model mice by treating gossypetin for 13 weeks through intragastric administration. Their spatial learning and memory were evaluated through behavior tests such as Y-maze and Morris Water Maze test. Hippocampus and cortex were acquired from the sacrificed mice, and they were used for histological and biochemical analysis. Also, mouse tissues were dissociated into single cells for single-cell RNA sequencing (scRNA-seq) analysis. Transcriptome of microglial population was analyzed. Mouse primary microglia and BV2 mouse microglial cell line were cultured and treated with fluorescent recombinant Aß to evaluate whether their phagocytic activity is affected by gossypetin. RESULTS: Gossypetin treatment improved the spatial learning and memory of 5xFAD by decreasing Aß deposition in the hippocampus and cortex of 5xFAD. Gossypetin induced transcriptomic modulations in various microglial subpopulations, including disease-associated microglia. Gossypetin enhanced phagocytic activity of microglia while decreasing their gliosis. Gossypetin also increased MHC II+ microglial population. CONCLUSIONS: Gossypetin showed protective effects against AD by enhancing microglial Aß phagocytosis. Gossypetin appears to be a novel promising therapeutic candidate against AD.


Assuntos
Doença de Alzheimer , Aprendizagem Espacial , Animais , Camundongos , Camundongos Transgênicos , Modelos Animais de Doenças , Doença de Alzheimer/genética , Microglia/metabolismo , Fagocitose , Peptídeos beta-Amiloides/metabolismo
5.
Comput Struct Biotechnol J ; 20: 1654-1669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465157

RESUMO

Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA